
www.manaraa.com

U N I T 1

IMPERATIVE PROGRAMMING

www.manaraa.com

Types of computer programming languages

There are basically three types of computer programming languages, they are

• Low level programming languages

• Middle level programming languages

• High level programming languages

Compiled by Ms. Prajakta Joshi

www.manaraa.com

LOW LEVEL LANGUAGES

• These are machine dependent programming languages such as Binary
(Machine code) and Assembly language.

• Since computer only understand the Binary language that means
instructions in the form of 0’s and 1’s (Signals - that can be either High or
Low), so these programming languages are the best way to give signals
(Binary Instructions) to the computer directly.

• Machine Code (Binary Language) does not need any interpreter or
compiler to convert language in any form because computer
understands these signals directly.

• But, Assembly language needs to be converted in equivalent Binary
code, so that computer can understand the instructions written in
Assembly. Assembler is used to convert an assembly code to its
equivalent Binary code.

• The codes written in such kind of languages are difficult to write, read,
edit and understand; the programs are not portable to any other
computer system.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

MIDDLE LEVEL PROGRAMMING LANGUAGE

• Since, there is no such category of computer programming

languages, but the programming languages that have features of low

level and high level programming languages come under this

category.

• Hence, we can say that the programming languages which have

features of Low Level as well as High Level programming languages

known as "Middle Level" programming language.

• C programming languages is the best example of Low Level

Programming languages as it has features of low level and high level
programming languages both.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

High level programming languages

• These are the machine independent programming languages, which are
easy to write, read, edit and understand.

• The languages like Java, .Net, Pascal, COBOL, C++, C, C# and other (which
are very popular now to develop user end applications). These languages
come under the high level programming language category.

• High level programming languages have some special keywords, functions
and class libraries by using them we can easily build a program for the
computer.

• Computer does not understand program written in such languages directly,
as I have written above that computer understands only Machine code. So,
here programming translators are required to convert a high level program
to its equivalent Machine code.

• Programming translators such as Compilers and Interpreters are the system
software’s which converts a program written in particular programming
languages to its equivalent Machine code.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

FEATURES OF HIGH LEVEL PROGRAMMING
LANGUAGES

• The programs are written in High Level programming languages and
are independent that means a program written on a system can be
run on another system.

• Easy to understand - Since these programming languages have
keywords, functions, class libraries (which are similar to English words)
we can easily understand the meaning of particular term related to
that programming language.

• Easy to code, read and edit - The programs written in High Level
programming languages are easy to code, read and edit. Even we
can edit programs written by other programmers easily by having
little knowledge of that programming language.

• Since, High Level language programs are slower than Low level
language programs; still these programming languages are popular
to develop User End Applications.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

IMPERATIVE PROGRAMMING

• Imperative programming is a paradigm of computer programming in
which the program describes a sequence of steps that change the

state of the computer.

• Unlike declarative programming, which describes "what" a program

should accomplish, imperative programming explicitly tells the

computer "how" to accomplish it.

• Programs written this way often compile to binary executables that

run more efficiently since all CPUinstructions are themselves

imperative statements.

• To make programs simpler for a human to read and write, imperative

statements can be grouped into sections known as code blocks.

Compiled by Ms. Prajakta Joshi

https://www.computerhope.com/jargon/p/paradigm.htm
https://www.computerhope.com/jargon/p/programming.htm
https://www.computerhope.com/jargon/b/binary.htm
https://www.computerhope.com/jargon/e/execfile.htm
https://www.computerhope.com/jargon/c/cpu.htm
https://www.computerhope.com/jargon/c/compinst.htm
https://www.computerhope.com/jargon/b/block.htm

www.manaraa.com

FEATURES OF IP

• Procedural programming is a type of imperative programming in

which the program is built from one or more procedures (also

termed subroutines.

• To make programs simpler for a human to read and write, imperative

statements can be grouped into sections known as code blocks.

Compiled by Ms. Prajakta Joshi

https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Subroutine
https://www.computerhope.com/jargon/b/block.htm

www.manaraa.com

HISTORY OF IP

• Earlier computers had fixed programs: they were hardwired to do one thing.

• Sometimes external programs were implemented with paper tape or by setting
switches.

• First imperative languages: assembly languages

• 1954-1955: Fortran (FORmula TRANslator)
John Backus developed for IBM 704

• Late 1950’s: Algol (ALGOrithmic Language)

• 1958: Cobol (COmmon Business Oriented Language) Developed by a government
committee; Grace Hopper very influential.

• The earliest imperative languages were the machine languages of the original
computers.

• In these languages, instructions were very simple, which made hardware
implementation easier, but hindered the creation of complex programs.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

EVOLUTION OF PROGRAMMING MODEL

• C programming language was developed in 1972 by Dennis Ritchie at
bell laboratories of AT&T (American Telephone & Telegraph), located
in the U.S.A.

• Dennis Ritchie is known as the founder of the c language.

• It was developed to overcome the problems of previous languages
such as B, BCPL, etc.

• Initially, C language was developed to be used in UNIX operating
system. It inherits many features of previous languages such as B and
BCPL.

• Let's see the programming languages that were developed before C
language.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

EVOLUTION OF PROGRAMMING MODEL

Language Year Developed By

Algol 1960 International Group

BCPL 1967 Martin Richard

B 1970 Ken Thompson

Traditional C 1972 Dennis Ritchie

K & R C 1978 Kernighan & Dennis Ritchie

ANSI C 1989 ANSI Committee

ANSI/ISO C 1990 ISO Committee

C99 1999 Standardization Committee

Compiled by Ms. Prajakta Joshi

www.manaraa.com

SIX GENERATIONS OF
PROGRAMMING LANGUAGES

Gen. 1st 2nd 3rd 4th 5th 6th

Period 1951-58 1958-64 1964-71 1977-88 1988- 1993-

Type Low-level Low-
level,
High-
level

High-
level

Very
high-
level

Object-
oriented

Web
tools

Example Machine
language,
Assembly
language

Assembly,
COBOL,
FORTRAN

BASIC,
Pascal

C++,
Turbo
Pascal,
4GLs

Visual
BASIC,
OOP,
CASE

HTML,
Front
Page,
Java

Compiled by Ms. Prajakta Joshi

www.manaraa.com

IMPERATIVE PROGRAMMING

• Advantage:

• Very simple to implement

• Better encapsulation

• Bugs free code

• It contains loops, variables

etc.

• Disadvantage:

• Complex problem cannot

be solved

• Less efficient and less

productive

• Parallel programming is not

possible

Compiled by Ms. Prajakta Joshi

www.manaraa.com

ALGORITHM

• In programming, algorithm is a set of well defined instructions in

sequence to solve the problem.

• The word “algorithm” relates to the name of the mathematician Al-

khowarizmi, which means a procedure or a technique

• Software Engineer commonly uses an algorithm for planning and

solving the problems.

• An algorithm is a sequence of steps to solve a particular problem or

algorithm is an ordered set of unambiguous steps that produces a

result and terminates in a finite time

Compiled by Ms. Prajakta Joshi

www.manaraa.com

QUALITIES OF A GOOD ALGORITHM

• Input and output should be defined precisely.

• Each steps in algorithm should be clear and unambiguous.

• Algorithm should be most effective among many different ways to

solve a problem.

• An algorithm shouldn't have computer code. Instead, the algorithm

should be written in such a way that, it can be used in similar

programming languages

Compiled by Ms. Prajakta Joshi

www.manaraa.com

ADVANTAGES OF ALGORITHM

• It is a step-wise representation of a solution to a given problem, which

makes it easy to understand.

• An algorithm uses a definite procedure.

• It is not dependent on any programming language, so it is easy to

understand for anyone even without programming knowledge.

• Every step in an algorithm has its own logical sequence so it is easy to

debug.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

HOW TO WRITE ALGORITHMS

• Step 1 Define your algorithms input: Many algorithms take in data to be
processed, e.g. to calculate the area of rectangle input may be the rectangle
height and rectangle width.

• Step 2 Define the variables: Algorithm's variables allow you to use it for more than
one place. We can define two variables for rectangle height and rectangle
width as HEIGHT and WIDTH (or H & W).

• Step 3 Outline the algorithm's operations: Use input variable for computation
purpose, e.g. to find area of rectangle multiply the HEIGHT and WIDTH variable
and store the value in new variable (say) AREA. An algorithm's operations can
take the form of multiple steps and even branch, depending on the value of the
input variables.

• Step 4 Output the results of your algorithm's operations: In case of area of
rectangle output will be the value stored in variable AREA. if the input variables
described a rectangle with a HEIGHT of 2 and a WIDTH of 3, the algorithm would
output the value of 6.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

WRITE AN ALGORITHM TO ADD TWO NUMBERS
ENTERED BY USER.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

WRITE AN ALGORITHM TO ADD TWO NUMBERS
ENTERED BY USER.

• Step 1: Start

• Step 2: Declare variables num1, num2 and sum.

• Step 3: Read values num1 and num2.

• Step 4: Add num1 and num2 and assign the result to sum.

• sum←num1+num2

• Step 5: Display sum

• Step 6: Stop

Compiled by Ms. Prajakta Joshi

www.manaraa.com

ALGORITHM FOR AREA OF RECTANGLE

• START

• Input Length of Rectangle as L

• Input Breadth of Rectangle as B

• Calculate Area= L * B

• Print Value of Area

• END / STOP

Compiled by Ms. Prajakta Joshi

www.manaraa.com

PSEUDOCODE

• Artificial, informal language used to develop algorithms

• Similar to everyday English

• Not executed on computers
• Used to think out program before coding

• Easy to convert into C++ program

• Only executable statements

• No need to declare variables

• It’s simply an implementation of an algorithm in the form of annotations and
informative text written in plain English. It has no syntax like any of the
programming language and thus can’t be compiled or interpreted by the
computer.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

ADVANTAGES OF PSEUDOCODE

• Improves the readability of any approach. It’s one of the best

approaches to start implementation of an algorithm.

• Acts as a bridge between the program and the algorithm or

flowchart. Also works as a rough documentation, so the program of

one developer can be understood easily when a pseudo code is

written out. In industries, the approach of documentation is essential.

And that’s where a pseudo-code proves vital.

• The main goal of a pseudo code is to explain what exactly each line

of a program should do, hence making the code construction phase

easier for the programmer.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

FLOWCHART

• A flowchart is a diagrammatic representation that illustrates the

sequence of operations to be performed to get the solution to a

problem.

• It can be seen from the definition that a flow always accompanies

with business or transaction.

• Not all of the flows, however, are appropriate to be expressed by

flowcharts, unless these flows are based on some fixed routines and

stable links.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

FLOWCHART SYMBOLS

• Terminator

The terminator symbol represents the starting or ending point of the

system.

• Process

A box indicates some particular operation.

• Document

This represents a printout, such as a document or a report.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

• Decision

A diamond represents a decision or branching point. Lines coming out from the
diamond indicates different possible situations, leading to different sub-
processes.

• Data

It represents information entering or leaving the system. An input might be an
order from a customer. An output can be a product to be delivered.

• On-Page Reference

This symbol would contain a letter inside. It indicates that the flow continues on
a matching symbol containing the same letter somewhere else on the same
page.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

• Off-Page Reference

This symbol would contain a letter inside. It indicates that the flow

continues on a matching symbol containing the same letter somewhere

else on a different page.

• Delay or Bottleneck

Identifies a delay or a bottleneck.

• Flow

• Lines represent flow of the sequence and direction of a process.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

DRAW A FLOWCHART TO ADD TWO NUMBERS
ENTERED BY USER.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

DRAW FLOWCHART TO FIND THE LARGEST
AMONG THREE DIFFERENT NUMBERS ENTERED BY

USER.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

COMPILER

• Actually, the computer cannot understand your program directly
given in the text format, so we need to convert this program in a
binary format, which can be understood by the computer.

• The conversion from text program to binary file is done by another
software called Compiler and this process of conversion from text
formatted program to binary format file is called program
compilation. Finally, you can execute binary file to perform the
programmed task.

• Advantages of Compiler

• A compiler runs much faster.

• The program can be distributed to many people who don’t have
compilers since a compiler is not needed after compiling occurs.

• A compiler is stored as an executable file.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

COMPILER

Compiled by Ms. Prajakta Joshi

www.manaraa.com

PROGRAMMING SENTINEL VALUE

• In programming, sentinel value is a special value that is used

to terminate a loop. The sentinel value typically is chosen so as to not

be a legitimate data value that the loop will encounter and attempt

to perform with.

• The sentinel value typically is chosen so as to not be a legitimate data

value that the loop will encounter and attempt to perform with. For

example, in a loop algorithm that computes non-negative integers,

the value "-1" can be set as the sentinel value as the computation will

never encounter that value as a legitimate processing output.

Compiled by Ms. Prajakta Joshi

https://www.webopedia.com/TERM/A/algorithm.html

www.manaraa.com

INTERPRETER

• We just discussed about compilers and the compilation process.
Compilers are required in case you are going to write your program in a
programming language that needs to be compiled into binary format
before its execution.

• There are other programming languages such as Python, PHP, and Perl,
which do not need any compilation into binary format, rather an
interpreter can be used to read such programs line by line and execute
them directly without any further conversion.

• Advantage of an interpreter:
• It immediately displays feedback when it finds a syntax error.

• The programmer can correct any errors or debug the code before the interpreter
evaluates the next line.

• Disadvantages:
• Interpreted programs do not run as fast as compiled programs because the

program must be translated to machine language each time it is executed

Compiled by Ms. Prajakta Joshi

www.manaraa.com

INTERPRETER

Compiled by Ms. Prajakta Joshi

www.manaraa.com

PROGRAM FOR “HELLO WORLD”

• #include <stdio.h>

• int main()

• {

• // printf() displays the string inside quotation

• printf("Hello, World!");

• return 0;

• }

Compiled by Ms. Prajakta Joshi

www.manaraa.com

• The #include <stdio.h> is a preprocessor command. This command tells
compiler to include the contents of stdio.h (standard input and output) file in
the program.
The stdio.h file contains functions such as scanf() and print() to take input
and display output respectively.
If you use printf() function without writing #include <stdio.h>, the program will
not be compiled.

• The execution of a C program starts from the main() function.

• The printf() is a library function to send formatted output to the screen. In this
program, the printf() displays Hello, World! text on the screen.

• The return 0; statement is the "Exit status" of the program. In simple terms,
program ends with this statement.

•

Compiled by Ms. Prajakta Joshi

www.manaraa.com

#include<stdio.h>

int main()

{

int a, b, c;

printf("Enter two numbers to add\n");

scanf("%d%d", &a, &b);

c = a + b;

printf("Sum of the numbers = %d\n", c);

return 0;

}

Compiled by Ms. Prajakta Joshi

www.manaraa.com

EVOLUTION OF PROGRAMMING MODELS

Compiled by Ms. Prajakta Joshi

www.manaraa.com

PROGRAM DEVELOPMENT LIFE CYCLE

Compiled by Ms. Prajakta Joshi

www.manaraa.comCompiled by Ms. Prajakta Joshi

www.manaraa.com

Problem Definition

• needed output

• available input

• definition of how to transform available input into needed output (or processing
requirements).

Analyze Problem

• Review the program specifications package

• Meet with the systems analyst and users

• Identify the program’s input, output, and processing requirements (IPO)

Compiled by Ms. Prajakta Joshi

www.manaraa.com

Design Programs

• Group the program activities into modules

• Devise a solution algorithm for each module

• Test the solution algorithms

• Top-down design

• Identify the major activity of the program

• Break down the original set of program specifications into smaller, more
manageable sections which makes it easier to solve that the original one.

• Continue to break down subroutines into modules which is a section of a
program dedicated to performing a single function.

• Hierarchy Chart or Top-Down Charts

Compiled by Ms. Prajakta Joshi

www.manaraa.com

Developing an Algorithm

• Programmers begin solving a problem by developing an algorithm.

• An algorithm is a step-by-step description of how to arrive at a solution.
You can think of an algorithm as a recipe or a how-to sheet

Program Code

• Writing the actual program is called coding.

• This is where the programmer translates the logic of the pseudocode into
actual program code.

• Programs should be written on paper first.

• A good program is one that is:
• Reliable

• Works under most conditions

• Catches obvious and common input errors.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

Test Programs

• Types of errors
• Syntax errors – occurs when the code violates the syntax, or grammar, of the

programming language.

• Misspelling a command

• Leaving out required punctuation

• Typing command words out of order

• Logic errors a flaw in the design that generates inaccurate results.

• All programs must be tested for errors. This is a process known as
debugging.

• There are two types of errors that must be eliminated from a
program before it can be used in a real-time computing
environment. They are:
• Syntax Errors

• Logic Errors

Compiled by Ms. Prajakta Joshi

www.manaraa.com

• Debugging

• There are several methods of debugging a program. They include:

• Desk checking

• Manual testing with sample data

• Testing sample data on the

computer

• Testing by a select group of potential users.

• Maintain Programs

• Correct errors

• Add enhancements

• Fix errors

• Modify or expand the program

Compiled by Ms. Prajakta Joshi

www.manaraa.com

• Program Maintenance

• Programming maintenance activities fall into two categories:

operations and changing needs.

• Operations - Locating and correcting operational errors and
standardizing software.

• Changing Needs - Programs may need to be modified for a variety of
reasons. For example new tax laws, new company policies.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

C PROGRAM STRUCTURE

• Documentations (Documentation Section)

• Preprocessor Statements (Link Section)

• Global Declarations (Definition Section)

• The main() function

• Local Declarations

• Program Statements & Expressions

• User Defined Functions

Compiled by Ms. Prajakta Joshi

www.manaraa.com

COMPILATION AND EXECUTION OF A PROGRAM

• Let's try to understand the flow of above program by the figure given below.

• 1) C program (source code) is sent to preprocessor first. The preprocessor is
responsible to convert preprocessor directives into their respective values.
The preprocessor generates an expanded source code.

• 2) Expanded source code is sent to compiler which compiles the code and
converts it into assembly code.

• 3) The assembly code is sent to assembler which assembles the code and
converts it into object code. Now a simple.obj file is generated.

• 4) The object code is sent to linker which links it to the library such as header
files. Then it is converted into executable code. A simple.exe file is
generated.

• 5) The executable code is sent to loader which loads it into memory and
then it is executed. After execution, output is sent to console

Compiled by Ms. Prajakta Joshi

www.manaraa.com

CHARACTER SET

Character Set

1. Letters
Uppercase A-Z

Lowercase a-z

2. Digits All digits 0-9

3. Special Characters

All Symbols: , . : ; ? ' "

! | \ / ~ _$ % # & ^ * -

+ < > () { } []

4. White Spaces

Blank space,

Horizintal tab,

Carriage return, New

line, Form feed

Compiled by Ms. Prajakta Joshi

www.manaraa.com

C KEYWORDS

C Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

continue for signed void

do if static while

default goto sizeof volatile

const float short unsigned

Compiled by Ms. Prajakta Joshi

www.manaraa.com

IDENTIFIERS

• Identifiers are user-defined names of variables, functions and arrays. It
comprises of combination of letters and digits. In C Programming,
while declaring identifiers, certain rules have to be followed viz.

• It must begin with an alphabet or an underscore and not digits.

• It must contain only alphabets, digits or underscore.

• A keyword cannot be used as an identifier

• Must not contain white space.

• Only first 31 characters are significant.

• Let us again consider an example

• int age1; float height_in_feet;

Compiled by Ms. Prajakta Joshi

www.manaraa.com

DATA TYPES

• Primary Data Types

• Derived Data Types

• User Defined Data Types

Compiled by Ms. Prajakta Joshi

www.manaraa.com

PRIMARY DATA TYPES

void As the name suggests, it holds no value and is generally used for

specifying the type of function or what it returns. If the function

has a void type, it means that the function will not return any

value.

int Used to denote an integer type.

char Used to denote a character type.

float,

double

Used to denote a floating point type.

int *,

float *,

char *

Used to denote a pointer type.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

DERIVED DATA TYPES

Data Types Description

Arrays Arrays are sequences of data items having homogeneous

values. They have adjacent memory locations to store values.

Reference

s

Function pointers allow referencing functions with a particular

signature.

Pointers These are powerful C features which are used to access the

memory and deal with their addresses.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

USER DEFINED DATA TYPES

Data Types Description

Structure It is a package of variables of different types under a single

name. This is done to handle data efficiently. "struct" keyword

is used to define a structure.

Union These allow storing various data types in the same memory

location. Programmers can define a union with different

members, but only a single member can contain a value at a

given time. It is used for

Enum Enumeration is a special data type that consists of integral

constants, and each of them is assigned with a specific

name. "enum" keyword is used to define the enumerated

data type.

Compiled by Ms. Prajakta Joshi

www.manaraa.com

CONSTANTS

• C Constants is the most fundamental and essential part of the C

programming language. Constants in C are the fixed values that are

used in a program, and its value remains the same during the entire

execution of the program.

• Constants are also called literals.

• Constants can be any of the data types.

• It is considered best practice to define constants using only upper-

case names.

Compiled by Ms. Prajakta Joshi

https://www.w3schools.in/c-tutorial/data-types/

